§ 5. Высказывания

Субъект, указанный в пункте 5 определения $\mathcal{A}2$ предшествующего параграфа, называется одноместным при n=1, двуместным при n=2 и т. д., вообще — энместным в зависимости от n.

Предикаты в свою очередь разделяются на одноместные, двуместные и т. д. (вообще на энместные, где $n \gg 1$). Мы предполагаем, что это разделение дано каким-то образом, т. е. предполагаем известным, каким является тот или иной предикат с этой точки зрения.

Если даны термины и выполнено только что приведенное допущение, то правила образования высказываний из терминов и высказываний задаются определениями такого вида.

D1. $(a \leftarrow b)$, $(a \frown b)$ и $(a? \leftarrow b)$ суть основные высказывания, если и только если a есть субъект, а b — предикат, причем, если a есть энместный субъект, то b есть столь же местный (энместный) предикат.

Высказывания, указанные в D1, читаются так:

- 1) $(a \leftarrow b)$ «а имеет признак b»; «а имеет b»; «а характеризуется тем, что b»; «b присущ a» и т. п.;
 - 2) $(a \supset \leftarrow b) \langle a \text{ не имеет } b \rangle$;
- 3) $(a? \leftarrow b)$ «a неопределенно имеет b (нельзя установить $(a \leftarrow b)$ или $(a \neg b)$; не известно, $(a \leftarrow b)$ или $(a \neg b)$ ».

D2. Высказывание:

- 1) основные высказывания суть высказывания;
- 2) если x есть высказывание, то $\sim x$ есть высказывание;
- 3) если x^1 , ..., x^n ($n \ge 2$) суть высказывания, то ($x^1 \cdot ... \cdot x^n$), ($x^1 \cdot ... \cdot x^n$) и ($x^n \setminus ... \setminus x^n$) суть высказывания;
- 4) если a есть термин, а x есть высказывание, то $(\forall a) \ x$, $(\exists a) \ x$, $(\neg \forall a) \ x$, $(\neg \exists a) x$; $(? \forall a) \ x$ и $(? \exists a) \ x$ суть высказывания;

- 5) если x и y суть высказывания, то $(x \to y), (x \to y)$ и $(x? \to y)$ суть высказывания;
 - 6) нечто есть высказывание лишь в силу 1—5.
- D3. Высказывание образующий оператор будем называть главным в данном высказывании в таких случаях:
- 1) \leftarrow есть главный оператор в $(a \leftarrow b)$, $(a \neg \leftarrow b)$ и $(a? \leftarrow b)$;
- 2) · есть главный оператор в $(x^1 \cdot ... \cdot x^n)$, $\sqrt{\ }$ главный в $(x^1 \setminus ... \setminus x^n)$; главный в $(x^1 \cdot ... \cdot x^n)$;
- $4) \rightarrow$ есть главный оператор в $(x \rightarrow y), (x \rightarrow y)$ и $(x? \rightarrow y);$
- 5) оператор, являющийся главным в x, является главным и в $\sim x$.

Высказывания, указанные в D2, читаются так:

- 1) $\sim x$ «He-x», «He так, как говорится в x»;
- 2) $(x^1 \cdot ... \cdot x^n)$ $(x^1 \mathbf{u} x^2 \mathbf{u} ... \mathbf{u} x^n)$, «Каждое из x^1 , ..., ..., x^n)»;
- 3) $(x^1:...:x^n)$ «Либо x^1 , ..., либо x^n », «Одно и только одно из x^1 , ..., x^n »;
- 4) $(x^1 \bigvee ... \bigvee x^n)$ « x^1 или... или x^n », «По крайней мере одно из $x^1, ..., x^n$ »;
- 5) ($\forall a$) x, ($\exists a$) x, ($\lnot \forall a$) x, ($\lnot \exists a$) x), ($\lnot \exists a$) x),
- 6) $(x \to y)$, $(x \to y)$, $(x? \to y)$ соответственно «Если x, то y» («Признание x обязывает признать y»), «Признание x не обязывает признать y», «Неопределенно, $(x \to y)$ или $(x \to y)$ ».